skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mogen, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract. The potential for multiyear prediction of impactful Earthsystem change remains relatively underexplored compared to shorter(subseasonal to seasonal) and longer (decadal) timescales. In this study, weintroduce a new initialized prediction system using the Community EarthSystem Model version 2 (CESM2) that is specifically designed to probepotential and actual prediction skill at lead times ranging from 1 month outto 2 years. The Seasonal-to-Multiyear Large Ensemble (SMYLE) consists of acollection of 2-year-long hindcast simulations, with four initializations peryear from 1970 to 2019 and an ensemble size of 20. A full suite of output isavailable for exploring near-term predictability of all Earth systemcomponents represented in CESM2. We show that SMYLE skill for ElNiño–Southern Oscillation is competitive with other prominent seasonalprediction systems, with correlations exceeding 0.5 beyond a lead time of 12months. A broad overview of prediction skill reveals varying degrees ofpotential for useful multiyear predictions of seasonal anomalies in theatmosphere, ocean, land, and sea ice. The SMYLE dataset, experimentaldesign, model, initial conditions, and associated analysis tools are allpublicly available, providing a foundation for research on multiyearprediction of environmental change by the wider community. 
    more » « less
  3. Abstract The Blob was the early manifestation of the Northeast Pacific marine heat wave from 2013 to 2016. While the upper ocean temperature in the Blob has been well described, the impacts on marine biogeochemistry have not been fully studied. Here, we characterize and develop understanding of Eastern North Pacific upper ocean biogeochemical properties during the Winter of 2013–2014 using in situ observations, an observation‐based product, and reconstructions from a collection of ocean models. We find that the Blob is associated with significant upper ocean biogeochemical anomalies: A 5% increase in aragonite saturation state (temporary reprieve of ocean acidification) and a 3% decrease in oxygen concentration (enhanced deoxygenation). Anomalous advection and mixing drive the aragonite saturation anomaly, while anomalous heating and air‐sea gas exchange drive the oxygen anomaly. Marine heatwaves do not necessarily serve as an analog for future change as they may enhance or mitigate long‐term trends. 
    more » « less